Topic 5

Generation and transmission of electricity

- 5.1 Describe current as the rate of flow of charge and voltage as an electrical pressure giving a measure of the energy transferred
- 5.2 Define power as the energy transferred per second and measured in watts
- 5.3 Use the equation: electrical power (watt, W) = current (ampere, A) × potential difference (volt, V)
 P = I × V
- 5.4 Investigate the power consumption of low-voltage electrical items
- 5.5 Discuss the advantages and disadvantages of methods of largescale electricity production using a variety of renewable and nonrenewable resources
- 5.6 Demonstrate an understanding of the factors that affect the size and direction of the induced current
- 5.7 Investigate factors affecting the generation of electric current by induction

a on a small scale

voltage

- b in the large-scale generation of electrical energy
- 5.9 Recall that generators supply current which alternates in direction
- 5.10 Explain the difference between direct and alternating current5.11 Recall that a transformer can change the size of an alternating
- 5.12 Use the turns ratio equation for transformers to predict either the missing voltage or the missing number of turns
- 5.13 Explain why electrical energy is transmitted at high voltages, as it improves the efficiency by reducing heat loss in transmission lines
- 5.14 Explain where and why step-up and step-down transformers are used in the transmission of electricity in the National Grid
- 5.15 Describe the hazards associated with electricity transmission
- 5.16 Recall that energy from the mains supply is measured in kilowatt-hours
- 5.17 Use the equation: $cost(p) = power(kilowatts, kW) \times time(hour, h) \times cost of$
- 1 kilowatt-hour (p/kW h)
- 5.18 Demonstrate an understanding of the advantages of the use of low-energy appliances
- 5.19 Use data to compare and contrast the advantages and disadvantages of energy-saving devices
- 5.20 Use data to consider cost-efficiency by calculating payback times
- 5.21 Use the equation:

power (watt, W) = energy used (joule, J) / time taken (second, s) $P = \frac{E}{L}$